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Disordered regimes of a one-dimensional pattern of liquid columns hanging below an overflowing circular
dish are investigated experimentally. The interaction of two basic dynamical modes(oscillations and drift)
combined with the occurrence of defects(birth of new columns, disappearances by coalescences of two
columns) leads to spatiotemporal chaos. When the flow rate is progressively increased, a continuous transition
between transient and permanent chaos is pointed into evidence. We introduce the rate of defects as the sole
relevant quantity to quantify this “turbulence” without ambiguity. Statistics on both transient and endlessly
chaotic regimes enable to define a critical flow rate around which exponents are extracted. Comparisons are
drawn with other interfacial pattern-forming systems, where transition towards chaos follows similar steps.
Qualitatively, careful examinations of the global dynamics show that the contamination processes are nonlocal
and involve the propagation of blocks of elementary laminar states(such as propagative domains or local
oscillations), emitted near the defects, which turn out to be essential ingredients of this self-sustained disorder.
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I. INTRODUCTION

In the last two decades, considerable effort has been de-
voted to the understanding of how complexity and unpredict-
ability arise in spatially extended systems. For this purpose,
studies of one-dimensional pattern-forming instabilities are
particularly instructive [1,2]: in such systems, the one-
dimensional nature enables a simple visualization of the dy-
namics by spatiotemporal diagrams, and the different steps
which drive the dynamics towards disordered states can be
clearly identified. These steps generally involve the loss of
certain space-time symmetries underlying the basic static
pattern[3]. Moreover, spatiotemporal chaos(STC) occurring
in such systems is supposed to have some qualitative simi-
larities with weak-developed turbulence in fluids[4,5].

The most famous of these pattern-forming systems are
probably the Rayleigh-Bénard(buoyancy) and the Bénard-
Marangoni (thermocapillary) convective instabilities[6–8].
Other quantitative studies have been performed on centrifu-
gal convective instabilities, namely, Taylor-Dean[9] and
Taylor-Couette flows[10]. A specific class is composed of
instabilities involving the destabilization of an interface: di-
rectional viscous fingering[11–13], directional solidification
[1,14,15], and liquid column arrays formed by a Rayleigh-
Taylor instability below a 1D circular ceiling[16–19]. More
“exotic” systems were imagined, still involving an interface,
such as, for instance, a liquid ridge inside an horizontal ro-
tating cylinder[20,21] or a circular array of ferrofluid pikes
induced by a normal magnetic field[22].

This enumeration is far from exhaustive(for more com-
plete references, see the bibliography of Refs.[2,23]), and
lots of these experiments evidenced a transition to spatiotem-
poral chaos via “spatiotemporal intermittency”(STI), similar
to what is observed in weakly turbulent flows: a coexistence
of laminar and turbulent domains, separated by fronts fluc-
tuating erratically in time and space. In the present paper, we
focus our attention to the circular array of liquid columns
[16–19]: a viscous liquid overflows from a circular dish fed
at constant flow rate, the resulting pattern being reproduced
in Figs. 1(a) and 1(b). In this system; disorder appears with a
scenario seemingly different than STI.

Basically, this experiment combines a Rayleigh-Taylor
(RT) instability of the liquid hanging below the dish and a
constant supply of liquid(at flow rate per unit lengthG).
Usually, the RT instability, resulting because of the combined
actions of destabilizing gravity and stabilizing surface ten-
sion, tends to create a pattern of pendant liquid drops, with a
typical spacinglRT=2pÎ2lc (lc=fs / srgdg being the capil-
lary length defined upon surface tensions, mass densityr,
and gravityg). The addition of a constant supply(with a
minimal G of 0.05 cm2/s) turns this pattern into a periodic
array of columns with a spacing slightly smaller thanlRT.
Contrary to the pendant drops, the array of columns exhibits
collective behaviors, accompanied by wavelength modula-
tion: depending on the relative motions of neighboring col-
umns, the local wavelength can vary from 0.8 to 1.9 times
the RT theoretical wavelength[see Fig. 1(c)].

Our previous investigations have evidenced that it be-
haves in a way very similar to directional viscous fingering
or directional solidification: spatially extended oscillations,
each column oscillating while remaining out of phase with
its neighbors, drift at a constant speed of “tilted” domains in
which the left-right symmetry is broken, coalescence and
nucleation of cells, etc. Therefore, its study is of great inter-
est for extracting general features concerning the dynamics
of this specific kind of interfacial system.
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Moreover, this system offers several advantages for an
exhaustive quantitative study of spatiotemporal chaos:(1)
the scenario of successive secondary bifurcations summa-
rized above is rather simple, and combinations of these in-
stabilities lead to chaotic spatiotemporal diagrams of “good”
quality (i.e., the columns trajectories in spatiotemporal dia-
grams remain always very well defined, without any local
disappearance of the pattern). (2) The circular geometry pro-
vides periodic boundary conditions which prevent any per-
turbations from edges. Even if the system has a finite size, it
enables propagative domains — having an essential role in
chaotic regimes as we shall see — to evolve as if they were
in an infinite medium.(3) As explained in our previous pa-
pers [16–19], one can control initial conditions(number of
columns and their positions) very easily by playing with a
needle put in capillary contact with the columns.

These properties introduce the pattern of liquid columns
as a convenient workbench to study spatiotemporal chaos in
the general dynamics of fluid fronts. The study of this sys-
tem, related in the present article is focused towards two
questions.(1) Qualitatively, how does disorder arises after
successive bifurcations and progressive losses of space-time
symmetries?(2) What are the statistical properties of chaotic
regimes? To answer this second point, it is necessary to de-
fine relevant quantities to be measured in our system, which
are not so obvious at first sight. To justify the use of a par-
ticular framework, it is now important to quote some previ-
ous endeavors in others experiments or numerical models.

A. Historical context

Contrary to geometrically confined systems, in which
chaos has only a temporal signification, chaos in spatially
extended systems can involve both a loss of time and space
coherence. Despite numerous studies, classification of ex-
tended systems with universal criterions is still a subject of
debate[24]. Such systems are not easily reducible into a set
of minimal generic equations, and it is most often impossible
to achieve a direct resolution at a “microscopic” level. That
is the reason why it is often necessary to borrow methods
from statistical physics or out-of-equilibrium thermodynam-
ics. Among various attempts, a conjecture by Pomeau[25]
drew similarities between STI and stochastic models of di-
rected percolation(DP). In both situations, disorder spreads
by contamination processes.

Few years later, Chaté and Manneville studied the statis-
tical properties of numerical deterministic systems such as
time-iterated coupled map lattices(CML’s), the complex
Ginzburg-Landau equation (CGLE) or the damped
Kuramoto-Sivashinsky equation(DKS) [26], which repro-
duce the qualitative behaviors of many experimental sys-
tems. One of the aims of these studies was to put into evi-
dence that, in such deterministic models, disorder spreads by
contamination in a similar way to the DP. Measurements
have been focused on critical exponents, deduced from di-
vergence laws for characteristic lengths and times. It turned
out that systems exhibiting STI(the numerical models men-
tioned above and a host of others systems) do not make up a
universal class: there exist almost as many set of exponents

FIG. 1. The circular fountain experiment.(a) A side view of the
array of liquid columns(dish radiusRe=5 cm, silicon oil 100 cP).
(b) The array viewed from above.(c) Magnified views of arches
connecting two columns. From top to bottom, static columns(ho-
mogeneous and reduced spacing, symmetrical shape), drifting col-
umns(homogeneous dilated spacing, asymmetrical arch), and oscil-
lating columns (alternatively dilated and shrunk spacing,
symmetrical arch).
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as studied systems[22]. Very few of them have critical ex-
ponents close to the ones measured or calculated in DP.
However, these studies provided some hints to relate expo-
nents values and mechanisms involved in disorder: recent
studies in deterministic numerical models have shown that
the occurrence of long-lasting solitonlike structures could
change the universality class[27] and even the order[28,29]
of the transition to chaos via STI. These studies have pointed
out the role of propagative structures — which can generate
turbulent sites in their wakes or by colliding each others —
in the breakdown of universality with stochastic models.
Otherwise, discontinuous cases of CML’s have been thus
successfully used to mimic the transition to turbulence in a
plane Couette flow[30], where the transition to STI is a
first-order one(discontinuous).

Until now, measurements of the critical exponents is one
of the sole methods to classify chaos in extended systems. In
many experiments, transition toward disorder(via STI or
not) is continuous so that critical exponents exist and can be
measured. Statistical studies on pattern-forming instabilities
were first achieved in the RB convection[7,8], where diver-
gences of length and time correlations where measured.
Similar behaviors were found in disordered cellular interfa-
cial fronts, such as in the printer’s experiment[12], in the
Taylor-Dean system[9], in the Taylor-Couette experiment
[10], or more recently in a system of ferrofluid pikes under
oscillating magnetic field[22]. In this last experiment, the
authors found that most of the critical behaviors could be
correctly fitted by exponents of stochastic models. They con-
cluded that the ability of disordered states to appear sponta-
neously within pure laminar domains(i.e., the absence of a
real “absorbing state” in experiments) could explain the dis-
crepancy with critical properties of stochastic models. Indeed
in most experimental systems, laminar domains(character-
ized by predictable dynamics inside them) include a host of
states which can behave differently in regards to disorder
[31]. In the same manner as iteration laws of coupled maps
can dramatically influence the transition, the successive bi-
furcations leading to chaos could also be determinant factors
in cellular patterns. That is also why disordered states occur-
ring in such patterns, despite finite-size limitations[32], are
of great interest as an alternative way of numerical studies.

Otherwise, there often exist striking similarities between
numerical models mentioned above and experiments, and
models are not only studied for their own properties but also
to mimic realistic systems. For example, the DKS equation
[33,34] has appeared relevant to describe the dynamics of
growing interfaces. A study of this equation in a confined
geometry showed similarities with the dynamics of some so-
lidification fronts, supported by the fact that the DKS equa-
tion can be obtained from general considerations about
mechanisms governing the dynamics of an interface[35].
However, a recent study showed that the transition toward
chaos(via STI) in DKSE was discontinuous[4,36], although
in most pattern-forming unstable fronts, the transition turned
out to be continuous.

B. Liquid column array: a brief survey

As we shall see, the pattern of columns introduced above
seemingly shows a continuous transition to disorder after

successive bifurcations, so that it is tempting to study it in
the usual framework presented before: the seek for critical
behaviors. It had been emphasized in previous studies
[17,19] that disorder should be the result of interactions be-
tween coexisting dynamical regimes(propagative domains,
oscillations, etc.). This is evidenced by the diagram on Fig.
2. Considered on their own, these laminar regimes are stable
within various ranges of the natural control parameter: the
flow-rate per unit lengthG (flow rate divided by the perim-
eter of the array). Moreover, they appear in a specific range
of local wavelength. Starting from a static state and increas-
ing flow rate can lead to oscillations of columns in phase
opposition. Occurrences of dynamical regimes can also be
related to modifications in the number of columns. A crucial
example is the following: by decreasing the number of col-
umns, one can initiate motions of several consecutive col-
umns, which create a stable propagating domain of drifting
columns, with dilated spacing between them(see the experi-
mental method in Refs.[16,17]). One visualizes the dynam-
ics of the pattern by means of spatiotemporal diagrams: three
of them are shown in Figs. 3(a)–3(c), showing, respectively,
a propagative domain of drifting columns(followed by tran-
sient oscillations), an extended oscillating regime, and a glo-
bal regime of drifting columns. The period of oscillations is
a reliable measurement of a characteristic time in the system.
This duration was found to decrease with flow rate[18,19]
and varies around one second.

In previous studies, it has been observed that local spac-
ing between columns is related to their dynamical behavior:
if the pattern is locally shrunk(i.e., columns are distant from
one another by 0.9 to 1.1 cm close to the most unstable
Rayleigh-Taylor wavelength), columns remain static. If it is
locally dilated(from 1.5 to 2.1 cm), columns drift as a con-
sequence of the growth of an antisymmetric mode which
breaks the left/right symmetry of arches linking two columns
[see Fig. 1(c)] A stability diagram(Fig. 4) is presented to
clarify the relative locations of dynamical regimes in the
space of control parameters. It is plotted upon mean wave-
lengthlM (inversely proportional to the number of columns
N) and flow-rate per unit lengthG. SC, OSC, LD, and GD,
respectively, stand for static columns, oscillations, local

FIG. 2. Extract from a diagram of spatiotemporal chaos. Disor-
der is sustained by nontrivial combinations between basic dynami-
cal regimes(oscillations and drifts). G=0.420 cm2/s.
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drifts, and global drifts. The smaller the number of columns
is, the fewer the share of static columns. Hatched areas stand
for ranges of parameters that are impossible to reach. This
diagram also includes a large domain of spatiotemporal
chaos(STC), for higher flow rates. This last area defines the
range of parameters for which the system is permanently in a

chaotic state, and whereN fluctuates and cannot be con-
trolled any longer. Elsewhere, chaotic regimes can appear
but only transiently: the system will then be attracted to-
wards one of the laminar regimes cited above. The reached
laminar regime will depend on initial conditions, but not
through a trivial relation. In both transient and permanent
cases, chaos is associated to fluctuations in the number of
columns. In the array of liquid columns, any change in the
number of columns is called a “defect,” so that it can corre-
spond to two kinds of events: the fusion of two columns into
a single ones−1d or the birth of one new column between
two neighboring columnss+1d (see extracts in Fig. 5).

Finally, it is worth mentioning a particular regime which
is composed of small consecutive propagative domains. This
is not obtained by the will of the experimentalist, but rather
spontaneously after long chaotic transients. An example is
shown in Fig. 6. This state has the remarkable property to
exhibit a spatial “triperiodicity,” i.e., the motions of columns
are identical each third column.

The aim of this paper is to present a statistical study of
chaotic regimes in the circular array of liquid columns on
both transient and permanent situations. To fulfill this pur-
pose, it has been necessary to define a criterion to measure
the turbulence that is relevant for our system, as will be seen
in Sec. III. In addition, this paper focuses on others ques-
tions. Can one measure any critical behavior in this system?
If transition to chaos does not proceed via STI, does disorder
behave as a contaminating process anyway? This last point
cannot be answered with just a few words. One first has to
carefully identify the mechanisms which create disorder in
our system. An entire section(VI ) in this article is dedicated
to it.

The paper is organized as follows. In Sec. II the experi-
mental setup is described. In Sec. III, we first expose general

FIG. 3. Spatiotemporal diagrams of basic states. Time runs ver-
tically, from top to bottom. The horizontal axis is the position of
columns along the dish(here radiusRe=5 cm). (a) A localized do-
main of drifting columns. One can measure the velocity of the
domain wallssvgd, of the drifting columnssvdd, the wavelength
inside the domainsl1d, and selected outsidesl0d, where an oscil-
lating wake can appearsG=0.232 cm2/sd. (b) Oscillations of col-
umns out-of-phase with nearest neighborssG=0.310 cm2/sd. (c) A
state of(global) drifting columns extended to the whole perimeter
sG=0.274 cm2/sd.

FIG. 4. Stability diagram in the space of control parameters:
mean wavelengthlmoy and flow-rate per unit lengthG. The thresh-
old Gc is the highest value of flow-rate above which an ordered
regime breaks up, and becomes a chaotic one; arrows illustrate
some possible evolutions from a regime to another one(see Sec. III
for further explanations).

FIG. 5. Magnified views on spatiotemporal diagrams enlighten-
ing the two kind of defects leading to chaotic dynamics.(a) The
fusion of two columns into one single.(b) The birth of a column
between two neighboring ones.
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features of chaotic regimes in our system. This is followed
by arguments, based on experimental observations, that have
led us to the choice of the defect rate(number of defects per
unit time) to quantify turbulence. In Sec. IV the study of
transient chaotic states is presented, followed by the study of
“stable” chaos(Sec. V). Section VI focuses on the mecha-
nisms creating disorder, towards the links between defects
and local occurrences of deterministic regimes.

II. EXPERIMENTAL SETUP

Silicon oil of viscosity h=100 cP, surface tensions
=20.4 dynes/cm, and densityr=0.97 g/cm3 at 20 °C is in-
jected at the dish center through a hollow vertical tube. The
flow is measured by a float flow meter(Brooks full view GT
1024) and kept constant by a gear pump(Ismatec BVP Z)
followed by a cylindrical damping chamber(half filled)
sradius=20 cm, height=15 cmd. The imposed flow-rateQ
ranges from 2 to 30 cm3/s. The oil temperature is regulated
with a thermal bath at 20 °C with a few percent accuracy.
Plexiglas circular dishes with different external radiussRed
have been used. One defines the flow-rate per unit lengthG
=Q/2pRe, which appears to be the relevant control param-
eter. It can be determined with an accuracy of ±0.005 cm2/s.
The data reported here were obtained with two dishes of radii
Re=5 cm and 8.35 cm. The accuracy of the dish horizontal-
ity is crucial for a quantitative study. It is tuned with a three-
foot table supporting the setup, by simply checking the uni-
formity of oscillation amplitudes of columns when the
system undergoes a transition to an oscillatory state[Fig.
3(b)].

Observed from above by a CCD video camera, and lit by
a circular neon tube put in the periphery of the dish and
slightly below it, the pattern appears as a series ofU spots
[see Fig. 1(b)]. Spatiotemporal diagrams are built by record-
ing grey levels along the circle on which the column centers
are moving. Experimentally, the radius of this circle was

found to be independent on the flow rate[16,17] and, respec-
tively, equal toR=4.77 cm andR=8.10 cm for the dishes of
radiusRe=5 cm andRe=8.35 cm. Images were digitized us-
ing NIH Image 1.62on a Macintosh computer. To achieve reli-
able image processing, it is important that the background
color of pictures acquired from above would be as homoge-
neous as possible and that the edge of columns would be
visibly sharp, in order to have well-controlled diagrams; Sev-
eral pieces of black papers cover the surround between the
dish and the neon tube to prevent unwanted light reflections.

Special care is also devoted to protect the system from
any source of perturbation. The dish is surrounded by a
transparent plexiglas cylinder of internal diameterd=18 cm,
to protect the system against any air motions around the
experiment. Moreover, in order to isolate the dish from vi-
brations induced by the thermostatic bath or the gearing
pump, these devices are put on foam beds of a few centime-
ters height each.

The viscosity of 100 cP has been chosen to constitute a
good compromise between two conditions, based on the fol-
lowing observations. Chaos is not observed for lower vis-
cosities, as was revealed by some attempts with several vis-
cosities from 10 to 70 cP. At higher viscosities, the transition
to chaos seems somehow perturbed by the omnipresence of
the triperiodical state described above, which complicates
the stability diagram. In a large range of flow rate, this state
is the only stable attractor and competes with the chaotic
regime. Thus, critical properties which are of interest here
appear more clearly with the 100 cP oil, where this state is
stable in a much smaller range of parameters.

In most measurements reported in this article, it has been
necessary to “initialize” the pattern of columns, which means
to obtain a new set of initial conditions from which the pat-
tern evolves at fixed flow rate. To achieve practically this
goal, the best procedure is to suddenly cut off the flow of
liquid, and to sharply restart it. To generate this step of flow
rate, one proceeds as illustrated in Fig. 7. An important ques-
tion is how broad the range of possible initial conditions is.
From careful examinations of spatiotemporal diagrams, it
turned out that this process first creates initial conditions
which are close to one another. When the liquid starts to
overflow again, it creates an homogeneous pattern of wave-
length around 1.30 cm. However, this state is very unstable
and during the first second, many defects appear[see Figs.
8(a) and 8(b)]. As a consequence, the system behaves in a

FIG. 6. Convergence of an initially chaotic state towards a par-
ticular state mixing oscillations and drift, with a spatial period three
times larger than the mean spacing between columns(see inset).
G=0.26 cm2/s, h=200 cP. The total duration is around 80 s.

FIG. 7. Diagram describing the initialization of the system.Gp is
the flow rate imposed by the pump.
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very chaotic way and is rapidly uncorrelated from the initial
state. In others words, after only one second, each “initial
condition” has been driven towards a state very different
from one another.

III. QUESTIONS TO TACKLE PRIOR TO THE STUDY
OF CHAOTIC REGIMES

The study of critical behaviors suggested in the historical
background needs a well-defined threshold. It has been men-
tioned that chaos could occur both transiently or perma-
nently, so that we expect to find remarkable properties at the
transition (in the following, the adjective “permanent” is
omitted, considering that chaos is permanent if no further
detail is mentioned). Referring to the stability diagram, one
definesGc as the minimum flow rate which belongs to the
curve separating the STC domain and domains of laminar
regimes(see Fig. 4). Below this threshold, it is observed that
the systemalways catches a laminar state after a chaotic
transient. However, as reported on the stability diagram,
there exist stable laminar states forG.Gc, for extreme val-
ues oflM: these states are either composed by a global drift,
by extended localized domains, or by shrunk static states.
During the numerous runs of the system, these conditions
have never been reached spontaneously from a chaotic state.
In others words, these states thus require specific initial con-
ditions that only the experimentalist is able to provide. The
hatched areas between STC and these states[labeled(1) and
(2) in the diagram], can only be crossed through one way,
from order to chaos. To summarize, conforming to the fea-
tures of our system emphasized above, the following defini-
tion is chosen: the thresholdGc from order to disorder is
defined as the value of the flow rate above which the pattern
will stay chaotic and will not catch a laminar attractor.

One question still remains to achieve a study of disor-
dered regimes: how to quantify disorder in our system? The
quantification of turbulence is generally obvious in numeri-
cal systems. In coupled map lattices, for example, a site is
defined as turbulent if the function associated to this site has
a value included in a fixed “turbulent interval”(correspond-
ing to an area where no fixed point lies for the basic func-
tion). In studies of the KSA equation, a site is considered as
turbulent if the peak-to-peak amplitude is lower than a given
threshold[26]. In experimental systems, this amplitude —
similar to the “height” of a cell — is generally more difficult
to measure. In most pattern-forming experiments, the pattern
is considered as locally turbulent if the wavelength gradient
or the temporal variations of the wavelength are large
enough[8,22]. In the array of liquid columns, such a crite-
rion is not relevant. Indeed, there exists dynamical states
combining large local variations in the spacing between col-
umns and completely predictable dynamics(for example, lo-
cal [Fig. 3(a)] or global drifting [Fig. 3(c)] and triperiodic
(Fig. 6) states). Criteria of turbulence deduced from the
wavelength gradient also do not fit with our system because
the triperiodic (“oscillating-propagating”) state (Fig. 6),
which is perfectly predictable, has locally large wavelength
gradients. If we consider temporal variations of the wave-
length, they can be locally large near defects as well as in
predictable oscillations, so that no criterion for turbulence
can be built upon this quantity. Finally, another possible cri-
terion built on the absolute value of the wavelength is also
put into fault. Indeed, the global drifting state[Fig. 3(c)] can
have local spacing between columns larger than what is
needed to enter a chaotic regime: parity-broken cells can

FIG. 8. Examples of disordered dynamics in the pattern of col-
umns.(a) At a flow rates0.14 cm2/sd smaller than the thresholdGc,
the pattern reaches predictable, periodic dynamics after a chaotic
transient.DT (here 3.5 s) corresponds to the duration between the
initialization of the system and the occurrence of the last defect.(b)
Same as(a) but at larger flow rates0.28 cm2/sd: the durationDt
(here 13.4 s) of the chaotic transient is larger.(c) For flow-rates
above thresholdGc (here,G=0.46 cm2/s), the pattern is endlessly
chaotic.
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hold a much larger wavelength than symmetrical ones with-
out breaking. Thus, usual criteria differentiating laminar and
turbulent states in pattern-forming instabilities cannot be ap-
plied in our system.

The only topological criterion of chaotic dynamics is the
presence of defects, i.e., a nonconstant number of cells. In
others words, the presence of these defects is a necessary and
sufficient condition to have unpredictable behavior, that is, at
least it is what our long and numerous acquisitions led us to
conclude. It is thus natural to choose the rate of defects
(number of defects per unit time) as a relevant quantity to
measure chaos in our system. In fact, these considerations
reveal a major characteristic of the pattern of columns. In
most of the studies of STC indeed, disorder is quantified by
the “turbulent fraction,” i.e., the mean surface filled by tur-
bulent domains in thesx,td plane. As no geometrical crite-
rion holds to define turbulent or laminar areas in our pattern,
there is not any binary structure sharing it between laminar
or turbulent domains. Consequently, one cannot access the
length and time distributions of laminar/turbulent regimes. In
other systems these distributions, deduced from the binary
structure in spatiotemporal diagrams, could lead to the mea-
surement of two critical exponents. The concept of a turbu-
lent behavior involving topological defects was first intro-
duced by Coullet and co-workers[38] in the 2D model
equation of Ginzburg and Landau. The denomination of
“defect-mediated turbulence”(DMT) was defined and the
authors put in evidence a discontinuous transition from a
plane-wave state to this regime(a jump to a nonzero value of
defect rate exists just above the threshold). Several systems
have shown DMT, although most of these are two-
dimensional ones: for example, convection induced by an
electric field[39], model equations of excitable media[40],
and more recently inclined layer convection[41]. A study on
model equations of convection pointed out that defects ap-
pear inside areas where Lyapunov exponents are larger than
zero (i.e., responsible for sensitivity to initial conditions)
[42]. The obvious link between presence of defects and un-
predictable dynamics in our system can be put in relation
with this assertion. Also in the complex Ginzburg-Landau
equation model, chaotic sequences can include a defect-
phase regime where defects, which are singularities in the
spatial phase, play a role of self-sustaining disorder(see, for
example, Ref.[43]). However, we only mention here a pos-
sible nature for chaos in our system: the present study does
not really answer if DMT occurs here.

In our experiment, defects are counted as follows. We
have programmed a “macro” in the softwareNIH IMAGE,
which extracts the number of columns after a grey level
threshold procedure. The number of columns is acquired 25
times per second. The time step of 1/25 s is much smaller
than the characteristic time of the system(approximately 2s).
Defects are then calculated by the absolute difference of two
consecutive numbers of columns. The consequence is that
simultaneous creation and annihilations+1−1=0d at the
same time step should not be taken into account in the count-
ing. Nevertheless, careful inspections of spatiotemporal dia-
grams have shown that such events are rare, and may play a
significant role only in extreme situations: in chaotic states
very far from thresholdGc (where the number of defects per

second can exceed 10) or during the first second of chaotic
transients, where defects are generally numerous(but which
are not taken into account in the measurements of critical
exponents, as mentioned later).

Quantitative measurements have been considered in two
different points of view depending on whether flow rate is
below or above thresholdGc. Several critical exponents are
deduced from statistical behaviors of chaotic transients, for
which investigation methods are quite different than usual:
instead of making statistics on long acquisitions of chaotic
states, one has to extract mean behaviors from many acqui-
sitions with different initial conditions. This unusual ap-
proach was already carried out in the plane Couette experi-
ment (discontinuous transition), comparatively to coupled-
map lattices[30], but to our knowledge this is the first time
that critical exponents will be deduced from chaotic tran-
sients in an experimental system.

IV. STATISTICAL STUDY ON CHAOTIC TRANSIENTS

If G,Gc, defects are counted during chaotic transients. A
step of flow rate is first created by the previously described
method (Fig. 7). The initial time is fixed when the liquid
overflows again from the dish(evaluated with a precision of
±0.1 s). Acquisitions are stopped when the pattern seems
stable enough to stay in the current state, i.e., that the number
of columns remains constant. This criterion is appreciatedde
visuby a direct observation of the motions of columns. For a
given value of the control parameter, the flow rateG, 250
acquisitions are done, each after an initialization of the sys-
tem.

Prior to results concerning the counting of defects, we
present measurements of mean durations of chaotic tran-
sients, i.e., the mean time difference between “initialization”
of the system and the occurrence of the last defect. After this
last defect, the dynamics is predictable. The final reached
state can be static, oscillatory, or can include several propa-

FIG. 9. Mean duration of chaotic transients versus flow rate. The
dashed curve is a guide for the eye.h=100 cP. The inset shows that
Dt is correctly fitted by a lawsGc−Gd−1, although the range of
exponent values is broader.
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gative domains. In Fig. 9, the mean durationkDtl of chaotic
transients versus flow rate is plotted. It is shown that the
mean duration of transients diverges, approaching threshold
Gc. At low flow rates,kDtl is independent upon flow rate, and
increases untilGc. The threshold value is

Gc = 0.325 ± 0.005 cm2/s. s1d

This value is determined by two ways. The first method
consists in starting from a high flow rate(typically
0.36 cm2/s) above the presumed value ofGc, and in decreas-
ing it by very small successive stepss0.005 cm2/sd. After
each step, one waits for around thirty minutes, which is
much longer than the largest mean duration measured below
threshold(and even longer than the longest duration mea-
sured for a transient), until a stable laminar state is reached.
A particular care is devoted to the reliability of this stability.
A laminar state is then obtained between 0.32 and
0.33 cm2/s. Even if we cannot exclude a slight discontinuity
or finite-size effects, the error of ±0.005 cm2/s is of same
order than the error in the flow-meter calibration(this error is
due to the direct lecture of the floater position and to the
possible power fluctuations of the pump). It is worth men-
tioning that the same procedure has been done with a larger
dish (radiusd=8.35 cm) and that the same value of flow-rate
threshold(per unit length) has been found. This suggests
that, even if finite-size effects exist in our system, they do
not affectGc.

The second method proceeds with the same logic, except
that one starts below threshold(from 0.290 cm2/s). One in-
creases the flow rate by successive steps of 0.005 cm2/s.
After each step, if the laminar state breaks, one waits for the
system to retrieve another laminar regime, and then makes a
new decreasing step. If after a duration of thirty minutes the
pattern is still chaotic, this means that the threshold has just
been overcome. A value around 0.325 cm2/s is found, simi-
lar to those given by the first method. Here also, the same
value ofGc is found for a larger dish.

The fit of our measurements of mean durations near
threshold, by the following power law, determine a first criti-
cal exponent

kDtl , sG − Gcd−g. s2d

This critical behavior denotes a divergence of a character-
istic time of the system, near threshold. VaryingGc from 0.32
to 0.33 cm2/s, the agreement is correct but the exponentg
depends on the chosen value forGc. The exponentg in Eq.
(2) can then vary from 0.5 to 1.1. Due to uncertainty onGc
and difficulties to run much more measurements near thresh-
old, g is determined with the following range of error:

g = 0.8 ± 0.25. s3d

Of course, these considerations are done under the as-
sumption of a continuous transition, for which characteristic
quantities follow power laws near threshold. This has to be
admitted at the present stage, even if one cannot exclude that
kDtl keeps a finite value at threshold. However, the similar
values for Gc found by the two methods, approachingGc
either by minor or major values, is consistent with a unique

threshold, and so on with a continuous transition. In systems
exhibiting a continuous transition to chaos via STI, an expo-
nent can be deduced from distributions of laminar domains
lifetimes just above threshold(notednt in most studies). In
our system, the exponentg could be the equivalent ofnt
[37], although measured just below threshold. Indeed, in sev-
eral experiments[22], a value fornt close to ours is found.
Beyond the determination of a critical exponent, a detailed
look at the distributions of durations is instructive. These
distributions are reported in Fig. 10(a), as a cumulative per-
centage of number of events of duration smaller than the
variableDt. As noticed above at the end of Sec. II(but with-
out any empirical proof), the system evolves through very
different ways during the first second after initial time, de-
spite initial stages are similar to each others for most of the
acquisitions. The huge dispersion of values forDt evidences
the high sensitivity to initial conditions.

Another point to mention is that the duration of a chaotic
transient does not seem to be linked with the final laminar

FIG. 10. (a) Number of transients of duration smaller thankDtl
presented as a cumulative percentage(over 250 acquisitions), for
three flow-rate values. The caseG=0.315 cm2/s is close to thresh-
old. (b) Histograms of numbers of columns(and corresponding
mean wavelength) of laminar states obtained after chaotic tran-
sients, for three different flow rates(250 acquisitions). Dish radius
Re=5 cm for (a) and (b).
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state, for a given flow rate. If one tries to build statistics on
final states, it appears that the only reliable quantity to com-
pare, is the number of columns. Figure 10(b) represents his-
tograms of events corresponding to several possible numbers
of columns in the final state. At small flow rates, the domi-
nant reached state contains a propagative domain the size of
which is minimal(corresponding toN=26 columns, with a
dish radius of 10 cm), see Fig. 8(a). At higher flow rates,
near threshold, the dominant state is the extended oscillating
regime(27 columns) [Fig. 3(b)], since a single small propa-
gative domain appears more and more unstable. A typical
example is shown in Fig. 11: after a chaotic transient(phase
1), the system first catches a 26-columns state(phase 2), but
this state is unstable and breaks to enter again a transient
chaotic regime(phase 3), and to finally reach a stable oscil-
lating regime(27 colums, phase 4). This example illustrates
how the progressive loss of stability for basic laminar states,
at increasing flow rate, may cause an increase of the mean
duration kDtl. The system has to “explore” more and more
configurations until it reaches a stable one.

In addition to statistics on final states, it is of interest to
scan how disorder evolves during transients. Figure 12
shows the total sum of defects versus time, during each time
step of the 250 acquisitions, for a flow rate ofG
=0.315 cm2/s (just belowGc). The decrease of defect occur-
rences is due, on one hand, to the broad distribution of tran-
sient durations and, on the other hand, to the decrease of the
rate of defects with time during a single acquisition. For a
sufficiently large number of acquisitions, Fig. 12 could illus-

trate the probability to encounter a defect at timet after
initialization. However, this total sum shows sharp variations
versus time, so that a quantitative study requires one to de-
fine and plot another quantity: the defect rate, i.e., the num-
ber of defects per unit time, for a duration larger than a time
step. This quantity, which evolves smoother with time, can
be more conveniently fitted by an analytic expression.

For each acquisition, the defect-rate is defined as

r =
Dst + dt,td

dt
. s4d

Dst+dt ,td is the number of defects during the time inter-
val ft ,t+dtg. dt is chosen to be equal to 200 ms, which
equals five time steps of acquisitions. This is much smaller
than the mean duration of a chaotic transient, and even
smaller than the characteristic time of the system(around
one or two seconds). Taking all acquisitions into account,
one defines the mean defect rate

krl =
1

N o rk, s5d

whererk is the defect-rate related to thekth acquisition and
Nacq the number of acquisitionssNacq=250d.

Figures 13(a)–13(f) are plots of the mean defect-rate ver-
sus time, for different flow rates. They are worth some com-
ments.

To enable the fit procedure to run correctly, it is necessary
to add an arbitrary(but negligible in regards to the experi-
mental noise) value of 10−8 s−1 to the mean defect rate, so
that the fit procedure proceeds until the time corresponding
to the occurrence of the last reported defect.

The time from which data are fitted should not be smaller
than the characteristic time of the pattern: that is the reason
why these plots start fromt=1s. Between the first second
(from t=0 to t=1 s), sequences of abnormally high defect
rates are not taken into account.

Plots(b) – (f) are correctly fitted by a power law, with an
exponenta which tends to increase approachingGc:

FIG. 11. Example of convergence towards a laminar state, just
below threshold. During phase 1, the pattern is disordered, until it
reaches a laminar state(phase 2). But this state is unstable and the
pattern enters again a chaotic regime(phase 3), and finally con-
verges to a stable laminar state(phase 4). The total duration is 68
G=0.30 cm2/s.

FIG. 12. Total sum of defects during the 250 acquisitions, just
below thresholdsG=0.315 cm2/sd.
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krl , t−aeffsGd, s6d

where aeff is an effective exponent, dependent upon flow
rate, which extrapolated value on threshold equalsa. Figure
14 shows the measured effective exponents versus flow rate.
An empirical curve is built(dotted line), and according to the
variation range found forGc [see Eq.(3)], one can extract by

extrapolation to threshold, a range of values for the critical
exponenta:

a = − 0.6 ± 0.15. s7d

The values forg anda are different than those obtained in
directed percolation. Nevertheless, it is not the main point of

FIG. 13. Mean defect rate versus time during chaotic transients.(a) – (f) are plots at increasing flow rates(G equals successively 0.136,
0.232, 0.245, 0.277, 0.300, and 0.315 cm2/s). The dotted lines stands for the median value of the best fit.
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interest of our study. In the search for critical phenomena, the
measurement of these exponents should instead emphasize
that the defect rate is a natural and convincing measure of
disorder, and that chaotic transients can be interesting to
study as well as permanent states, provided that a sufficiently
large number of acquisitions are run. This condition is not
necessary when chaos is permanent, which is presented in
the next section.

V. STATISTICAL STUDIES OF CHAOTIC STATES

If G.Gc, the pattern endlessly exhibits defects and cha-
otic dynamics. The study of chaotic states is simpler than
transients, because it is not necessary to run the system from
many different initial conditions. Sufficiently long acquisi-
tions are supposed to capture most of the statistical features
which are of interest here.

After a long wait (typically 30 min), an acquisition is
started. Its duration is approximately twenty minutes(30 000
time steps). Defects are counted during acquisitions and the
defect rate is deduced, still defined as in Eq.(4). It is gener-
ally found (at least far from threshold) that the defect rate
does not fluctuate during a complete acquisition, the cumu-
lative number of defects appears as a quite straight line ver-
sus time. This means that the defect rate should not depend
on the parameterdt, the time interval during which the defect
sum is calculated, provided thatdt is larger than ten time
steps(400 ms). However, this is no longer true for acquisi-
tions close to threshold. Indeed, just aboveGc, long laminar
phases can be observed alternatively amongst chaotic phases.
An example of such behavior, frequently observed just above
threshold, is illustrated on Figs. 15(a) and 15(b). When the
flow rate is increased, the duration of these laminar phases
rapidly decreases. The typical flow rate above which these
phases are of same order of magnitude as the characteristic
time of the system, or shorter, is around 0.39 cm2/s (then a
relative distance to threshold around 20%). It is thus neces-
sary to keep in mind this behavior before the presentation of
measurements of disorder during chaotic states.

In order to measure the disorder dependance with the dis-
tance to threshold, several long acquisitions are done: two or
three runs per flow-rate value, except near threshold where 5
to 12 acquisitions per flow-rate values are done(mainly for
the dish of radius 5 cm). Results are plotted in Figs. 16(a)
and 16(b). Figure 16(b) is a magnified plot of(a) near thresh-
old. Each point represents a mean defect rate during an ac-
quisition of 30 000 time steps. These plots reveal several
facts. The mean defect rate increases, with a seemingly linear
law, with the flow-rate differencesG−Gcd. The defect rate is
larger with a dish of larger radius. The ratio of two defect
rates, for the two different dish and the same flow rate, does
not equal the ratio of dish radius. Close to threshold, mea-
surements are more dispersed[see Fig. 16(b)]. This is due to
the occurrence of the long laminar phases introduced above.
Then, a duration of twenty minutes is not long enough to
measure a consistent mean value. That is the reason why the
mean defect rate has to be deduced from several consecutive

FIG. 14. Effective exponent providing the best algebraic fit of
density decrease versus time[see Figs. 13(b)–13(f)].

FIG. 15. (a) Existence of long laminar(defect-free) phases, just
above thresholdsG=0.343 cm2/sd. (b) Defect-rate versus time, at
the same flow rate than(a) but for another acquisition, showing a
significant defect-free phase of duration around 21 s. The slope of
the line stands for the mean defect rate during this extract.
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acquisitions, as some memory limitations in our computer do
not allow acquisitions longer than 20 min. The large crosses
in Fig. 16(b) stand for mean defect-rate values; the dotted
line is a linear fit deduced from these values. Sufficiently far
from threshold, the deviation from an acquisition to another
is small.

From these data, the defect-rate appears as a seemingly
power law versus the distance to threshold

krl , sG − Gcdb. s8d

The question is now which range of data has to be taken into
account for the determination ofb, knowing that Eq.(8) is
supposed to be reliable only near threshold? Moreover, it is
worth to mention that, as soon as the defect rate overcomes
10 to 15 defects per second, the counting is limited by pos-
sibly non-negligible occurrences of simultaneous creation
and disappearance of columns during the same time step
[‘‘ s+1ds−1d’’ events mentioned above]. This could lead to an
underestimated defect rate far from threshold. Thus, mea-

surements far from threshold have finally not been taken into
account for the determination of the critical exponentb; the
limit of validity has been chosen from 0.33 to 0.55 cm2/s.

The value forb is found equal to

b = 1.0 ± 0.1. s9d

In most experimental systems exhibiting STI,b is deduced
from the “turbulent” fraction(the relative chaotic surface in
spatiotemporal diagrams) versus the relative distance to
threshold. A question would then essentially need to be an-
swered: could the defect rate be measured in others systems,
and in such a case, would it provide results comparable to
the values obtained with the turbulent fractions? Studies of
some systems seemingly involving defects, such as direc-
tional solidification, printer’s instability, or ferrofluid pikes,
could possibly answer this question. Another possible further
way of investigations would be to determine the distribution
of durations of defect-free phases. Such calculus has been
tried but because of the cutoff due to the finite time step
s1/25 sd during acquisitions, the obtained data cover barely
more than one decade in time and are not conclusive. After
quantitative studies of critical properties, in a framework
comparable to that used in STI, it is now of interest to return
to specific points which enlighten how the pattern of col-
umns is different than systems involving STI.

VI. BACK TO MECHANISMS INVOLVED IN DISORDER

This section presents a qualitative overview of mecha-
nisms involved in disorder and shows why chaos in our sys-
tem is different than chaos via STI occurring in most of the
systems mentioned above. In several pattern-forming insta-
bilities (such as the Rayleigh-Bénard convection, the Taylor-
Couette system, etc.), transition to chaos occurs via STI,
which appears as turbulent patches, comparable to the spots
observed in the plane Couette flow. Within a chaotic regime,
the pattern is no longer constituted by identical cells: in tur-
bulent domains, the shape of the cells fluctuates(see, for
example, Fig. 4 of Ref.[8]). Chaos appears in a different
way in the array of columns, in the sense that the morphol-
ogy of the cells is the same in both predictable and chaotic
regimes. This means that the pattern of columns cannot be
divided between laminar and turbulent patches, as already
noted. This also signifies that the features which constitutes
disorder do not lie in the morphology of cells, but rather
depends on their relative motions. This last sentence suggests
that basic dynamical regimes get involved in disorder, al-
though they constitute completely laminar and predictable
states when they are isolated.

Particularly sound is the role of propagative domains.
They have been previously studied through their intrinsic
properties in nonchaotic regimes[17,19], which are presum-
ably linked to mechanisms creating and sustaining disorder.
In the following, we give a short summary of these features.

The wavelength inside a domain can adjust itself in a
broad range of values(around 30% of the median value), but
the wavelength outside is selected at a fixed valuel0 inde-
pendent on flow-rate and others geometrical parameters.

For sufficiently high flow-rates, the wake following a do-
main at the selected wavelengthl0 involves oscillating col-

FIG. 16. (a) Mean defect rate during acquisitions of duration
twenty minutes, showing a quite linear increase with flow rate, for
two dish radius.(b) Zoom of (a) in the threshold vicinity, showing
a significant dispersion of data, due to long laminar phases. Crosses
represent the mean under several acquisitions(radius Re=5 cm),
and the hatched area is the range forGc.
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umns. These oscillations can amplify and lead to defects[see
Fig. 17(a)].

When two domains propagate to the same direction, the
velocity of their walls become equal after a very short time,
so that they never encounter. When two domains propagate
to opposite directions, they collide and generate defects[see
Fig. 17(c)]. The final state is a propagative domain, the size
of which is a subtraction of the sizes of initial domains(or a
static state if the initial sizes were equal). Moreover, the link
between colliding domains and defect creations is bilateral:
defects can launch propagative domains that meet and create
other new defects[Fig. 17(b)]. This constitutes the main part
of disorder sustaining. The same kind of behavior can be
produced by CML, and it has been shown that if such col-
liding solitary structures are sources of disorder, they can
play a role in the universality class of the system[27].

Although drifting columns appear in localized structures,
it has been shown that the corresponding bifurcation is su-
percritical. More generally, secondary bifurcations are con-
tinuous in the array of columns[18]. Observation of STI in
such a system is possible only if at least one of the succes-

sive bifurcations is subcritical. So that this definitely dismiss
the transition scenario via STI.

However, it does not mean that a contamination process
does not exist in this system, especially because propagative
structures can spread disorder in a specific way. We illustrate
more clearly these complex mechanisms in an example of
globally disordered pattern: Fig. 18 presents a spatiotemporal
diagram in which we have drawn black circles around each
defect (as a zone of influence) [37]. On the same diagram,
some edge walls of propagative domains are represented by
black lines.

This diagram shows that defects can appear isolated, or
within small groups, and do not seem to spread by contami-
nation, contrary to what is observed in turbulent domains of
STI. However, these groups of defects seem to be connected
with each other by propagative domains, as is suggested by
several straight lines. Thus disorder, although involving un-
predictable dynamics, is constituted by deterministic blocks
(propagative domains or oscillating patches). This is not
paradoxical, if one considers that the loss of spatial or tem-
poral symmetries are generally first steps toward complex
phenomena. What seems to be original in the pattern of col-
umns, is that these deterministic blocks give rise to defects,
which seem to constitute the real cause of unpredictability, as
in the CGLE equation, for example. A similar scenario could
occur in related systems, such as fluid fronts or in some
patterns obtained in directional solidification[1,14,15]
where, to our knowledge, no quantitative study of chaotic
regimes has been done until now.

VII. CONCLUSION

To conclude, we have presented a quantitative study of
disordered states in the pattern of falling liquid columns.
Disorder in our system does not appear as the coexistence of
laminar and turbulent domains, and thus is not included in
the usual definition of spatiotemporal intermittence. By
adapting the usual framework of STI to the specific proper-
ties of our system, we have measured three critical expo-
nents, with satisfactory ranges of error despite finite-size ef-

FIG. 17. Illustrations of mechanisms creating disorder.(a) An
oscillatory wake created behind a propagative domain can destabi-
lize and make the pattern entering the STC regime.(b) A defect
launches two small propagative domains, that are going to collide
and create new defects.(c) Two colliding propagative domains gen-
erate defects.

FIG. 18. Diagram evidencing the coupled roles of defects and
propagative structures in disorder sustaining.
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fects. Thus, it has been shown that occurrences of defects,
which cause unpredictable dynamics, can quantify disorder
in such a pattern. The defect rate then appears as a natural
measure of disorder, such as the usual “turbulent fraction” in
STI. It should be of interest to apply this framework to pat-
terns with destabilizing interfaces, where dynamical behav-
iors are similar.

Another original framework, used here to determine criti-
cal properties, is to approach the threshold from minor val-
ues, where chaotic dynamics are transient. In particular, it
has been demonstrated that a statistical study of chaotic tran-
sients can lead to measure the divergence of a characteristic
duration. A similar quantity is usually measured approaching
the threshold from above, deduced from time distributions or
by mean durations of laminar domains lying in STI regimes
[8–10,12,21,22].

This study also emphasizes the role of propagative struc-
tures in the creation of disorder: first, they give rise to an
oscillating wake that can amplify and break; second, their
multiple collisions generate defects. Reciprocally, defects
themselves create small propagative domains that are going
to collide and loop the contaminative process. This suggests
that disorder appears in our system as an ensemble of deter-

ministic blocks (propagative domains or oscillations),
strongly interacting with each others. That is also the reason
why disorder is never localized. Disorder then appears glo-
bally, even just above threshold, and is perhaps the most
essential difference with systems exhibiting a transition via
STI. Then, the nature of this chaos could be related to “de-
fect mediated turbulence,” even if there is no definitive
proof.

Let us finally mention the recent observations of a two-
dimensional extension of this experiment[44,45]: in a 2D
pattern of columns, disorder seems to be able to localize into
domains coexisting with static ones. Between order and dis-
order, a separative front can stay stable for a long time,
which constitutes a major difference from the 1D array. Dy-
namical regimes not observed in the 1D array have been
reported in Ref.[44], where a flow state diagram is also
presented.
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